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ABSTRACT 

In this thesis, depth information extraction via ordinal measures for logical pattern 

correlation is investigated, along with matching techniques that translate well into 

hardware implementations. First, the ordinal correspondence metric is evaluated for 

complexity and performance using traditional correspondence matching techniques. The 

results show that the ordinal measures are very robust in stereo correspondence when 

paired with modest error handling techniques. Second, the ordinal measures are applied 

to an efficient dynamic programming matching algorithm to produce high-quality 

disparity maps. It is shown that ordinal measures are demonstrably fast in software and 

that they can be adapted to an extremely fast hardware implementation to produce high 

quality disparity maps for very high resolution images in real time. 
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EXECUTIVE SUMMARY 

Solving the stereo correspondence problem to produce disparity maps offers 

robots an effective means to segment and understand the real world. Disparity maps are a 

three-dimensional (3D) reconstruction of the scene in front of a stereo pair of cameras. 

Significant research has gone to make solving for the disparity map faster and more 

accurate so that they can be implemented in real time for robotics and other commercial 

applications. A robot capable of determining objects based on their spatial information in 

a disparity map can potentially interact with them in much the same way humans see and 

interact with objects. 

The objective of this research was to investigate a matching metric and computer 

vision algorithm, each with acceptable accuracy and potential for efficient hardware 

implementation. The areas of interest are:  

1. The correlation coefficient 's  accuracy in determining matches, 

2. The implemented metric hardware utilization and latency. 

Also, the correspondence matching algorithms were looked at for:  

1. Computational complexity, 

2. Accuracy in determining depth from a stereo pair of images, 

3. Memory requirements. 

For this research, the ordinal correlation coefficient   was evaluated by the 

metric objectives, and a traditional pattern matching algorithm and a dynamic 

programming pattern matching algorithm were evaluated under the correspondence 

matching algorithm objectives.  

The stereo correspondence problem is solved by matching points between a stereo 

pair of images. For every point in the reference image of the stereo pair, a matching point 

is found in the target image of the stereo pair. This match is described by a translation 

vector from the reference pixel in the reference image to the target pixel in the target 

image. All the disparity vectors consolidate into a dense map called a disparity map. The 
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disparity map is represented such that the intensity at each point is proportional to the 

magnitude of the disparity vector (proportional to depth) at each point in the dense map.  

The ordinal itself was investigated for its candidacy toward hardware 

implementation. The proposed architecture can be fully synthesized in a field 

programmable gate array (FPGA) and computes the first correlation coefficient   in 

25 log n     clock cycles fully pipelined. While an actual implementation was not 

possible for this research due to time constraints, an implementation of only the ordinal 

as a macro function could be sufficient to achieve real-time dense disparity map 

computation. The ordinal satisfactorily met the objectives of performance and for 

candidacy toward hardware implementation. 

The ordinal coefficient   was first evaluated for performance with a traditional 

back-matching strategy. The back-matching strategy is a “greedy” method where the best 

match within a set of possible candidate matches is chosen by maximizing the correlation 

coefficient .  However, the traditional back-matching strategy alone introduces too much 

error from the matching process as a result of distortions inherent to stereo vision (such as 

occlusions, specularity, depth boundaries or projective distortion). To mitigate this, the 

method was improved by ad-hoc error correction. Two such error correction techniques 

were evaluated: “masked averaged hole fill,” resembling a zero-order hold error correction, 

and “masked linear hole fill,” resembling a first order linear interpolation error correction. 

The results were of significantly higher quality after error correction. 

The ordinal coefficient   was next evaluated using dynamic programming, 

producing raw results of much higher quality and accuracy compared to the traditional 

strategy unaided by ad-hoc error correction. The dynamic programming algorithm 

investigated offered greater latitude in computational complexity and memory usage 

optimizations over the traditional technique. The memory requirements were proportional 

to the computational complexity such that an efficient and fast implementation of the 

dynamic programming method could be achieved in an FPGA. The dynamic 

programming method met the objectives of computational complexity, memory 

requirements and accuracy. 
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I. INTRODUCTION 

A. BACKGROUND 

As the field of robotics advances, powerful sensor fusion and processing is 

needed to recognize and interact with objects and the world autonomously in real time 

[1]. There are many avenues for object recognition in robotics such as radar, sonar, optics 

and manipulation [2], [3], [4]. In the natural world, vision provides the majority of spatial 

awareness and object recognition since vision and video are signals carrying vast 

quantities of information about the world. Visual information can be passively obtained 

from cameras, offering improved security, safety and power advantages for robots. Thus, 

image and video processing has been an area of interest for advanced robotic intelligence 

navigation. 

Video processing can be computationally intensive, requiring powerful and costly 

visual systems to process large data streams. Efficient implementation of video 

processing algorithms is necessary to handle the data meaningfully. Furthermore, 

accurate object segmentation often requires sophisticated algorithms that can be difficult 

to implement in real time [5]. An efficient implementation of computer vision algorithms 

with the intent for use in robotics and machine intelligence was investigated in this 

research. 

1. Computational Complexity 

Computer algorithms are analyzed using a special notation that permits a 

generalized comparison independent of exact implementation details. The notation used 

in this thesis for algorithm analysis is the big theta notation  g  where g  is a function 

proportional to the average execution time of an algorithm but not approaching 

asymptotic execution time. The big theta notation accounts for an algorithm’s 

computational complexity (for loops and some lower bound constant multipliers) but 

ignores implementation specific details such as the time needed to execute a particular 



 2

procedure such as adding, multiplying or moving data.  For example, an algorithm has 

two for loops iterating through a data set that has n  input elements. One of the for loops 

also requires a lower bound constant multiplier c  to execute. The big theta notation for 

this algorithm’s complexity would be  2cn  indicating that the algorithm would 

require at least approximately 2cn  time to execute. Also, the big theta notation allows for 

implicit comparative execution time such that     max , .m n m n     In this case, 

the execution time (computational complexity) of the algorithm is at least proportional to 

the greatest of all the terms in .g  The notation can also be used to indicate complexity in 

memory requirements or complexity in hardware implementation [6]. 

Hardware implementations can be tailored to be fully sequential or fully parallel. 

Thus, the computational complexity  g  in time comes at a trade-off with the 

hardware complexity  f  in instance replication. Given an algorithm with the potential 

for full parallel implementation that takes  n  time to execute in software, a hardware 

implementation could instantiate a single instance of the procedure such that it has  1  

instantiated (spatial) complexity but requires  n  time to execute the algorithm. The 

hardware could also have n  instantiations of the algorithm procedure such that it has 

 n  complexity in space but executes that algorithm in  1  time. Thus, a machine 

could have a theoretical lower bound instantiated complexity  1  and a theoretical 

upper bound in instantiated complexity of an algorithms worst case execution time 

 .n  This is analogous to transforming an algorithm’s execution in time to an 

equivalent execution in parallel space. 

2. Hardware Implementation 

Complex procedures can be implemented in hardware as macro functions that can 

outperform similar software implementations. For example, a floating point 

multiplication can be accomplished with fixed point multipliers and a software driver, but 

at reduced performance and power efficiency with respect to a floating point macro in 
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hardware. For this reason, processors commonly have hardware specific for floating point 

operations. In many cases, functions and procedures have opportunities for efficient 

hardware implementation that can speed up the execution of algorithms dependent on 

such functions. 

In computer vision, algorithms commonly iterate through all the pixels of an input 

image. This gives computer vision algorithms the characteristic burden of dimensionality 

with at least the growth function  MN  where M  and N  represent the number of 

rows and columns of the image, respectively [7], [8]. Such a growth function can get out 

of hand quickly, especially if the core procedure is not trivial. For example, if the 

algorithm were to perform only a single floating point calculation, a slow floating point 

implementation that executes in t  time grows to a total execution time of at least .MNt  If 

t  is large and the image has many pixels, a real time execution may not be possible with 

the slow procedure. In the aforementioned growth function, a procedure is executed for 

every row and for every column in each row (nested loops). If the procedure of the inner 

loop (the loop executed the number of times described by the growth function) is not 

trivial as commonly seen in computer vision algorithms, a hardware implementation may 

be necessary for feasibility. 

Hardware implementation can be achieved through a wide range of products as all 

integrated circuits are essentially a hardware implementation of some function or 

procedure. A widely available device for rapid prototyping and hardware implementation 

is the field programmable gate array (FPGA). FPGAs are a “blank slate” integrated 

circuit that can be configured with a hardware function after the device has been 

fabricated. This has made FPGAs useful for assisting algorithms with fast 

implementations of complex procedures that are too slow for software without the costly 

design and fabrication of application specific integrated circuits (ASICs). 

For this research, hardware implementation is assumed to be implemented in a 

typical FPGA, such as Altera, which has unique logic synthesis characteristics which may 

be dramatically different from another FPGA technology. The implementations are 

intended to be synthesized and run at a clock speed of the order of 100 MHz. Thus, one 
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clock cycle is defined as 10 nanoseconds, and a circuit that requires one clock cycle in an 

Altera FPGA (i.e., a Cyclone or Stratix device) must not have any transient activity 

(clock slack) exceeding 10 nanoseconds. When any architecture is proposed, one must 

carefully consider the gate-to-gate propagation delay or critical path, which can be highly 

dependent on a device’s architecture and the combinatorial complexity of the circuit to be 

synthesized. The clock cycle numbers proposed in this research were verified using the 

Altera Quartus II 8.1 software and the Timequest Timing Analyzer slow 1100mV and 85 

degrees Celsius model on the Cyclone family of FPGAs. 

3. Software Simulation 

Hardware and software implementations are far from exclusive of one another. 

Algorithms with potential for hardware implementation often still require management of 

memory and states; also, software implementations of algorithms must always operate 

above at least some hardware. However, some software routines such as dynamic 

memory allocation can be very difficult to implement in hardware. Thus, some software 

routines are not easily synthesizable into a hardware equivalent, but any hardware routine 

can be simulated with software and basic data management capabilities. An illustration of 

synthesizable hardware routines and software routines is shown in Figure 1. 

Software

Hardware

 

Figure 1.   Software and Hardware Venn Diagram. 

On a personal computer, software has access to the fundamental hardware 

building blocks, such as adding and multiplying, needed to construct complex procedures 
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that may or may not be possible in hardware. For the purpose of this research, software 

procedures that have potential for efficient hardware implementation are considered but 

are not actually synthesized. Software simulation of such procedures allows for accurate 

estimation of hardware performance and complexity. 

B. THE CORRESPONDENCE PROBLEM 

In computer vision, the depth of a scene can be calculated by solving the 

correspondence problem between two images. A scene’s depth is a three-dimensional 

process that can be calculated from the distortion between two or more images. A 

computer must first identify points in the different views that correspond in space, a non-

trivial problem that requires complicated pattern matching metrics and schemes to 

accurately correlate points. Recent research in the correspondence problem has been in 

algorithms that can accurately identify matching points in real time [5]. Real time is the 

equivalent of human perception of time or approximately 30 frames per second. The 

commercial application of the correspondence problem is the generation of disparity 

maps for object recognition and segmentation. The magnitude of the disparity map is 

inversely proportional to the depth of the scene represented by the different viewing 

angles. 

Disparity maps are typically a dense matrix of vectors wherein the matrix 

dimensions are approximately equal to the dimensions of the original images. In a stereo 

pair of images, one image is taken as the reference image, and the other image is the 

target image. A pixel from the reference image represents a point in space and is 

correlated to a pixel in the target image. The horizontal and vertical translation of the 

correlated point from its reference pixel in the reference image to the target pixel in the 

target image is described by a vector. This vector is illustrated in Figure 2. The 

magnitude of each vector in the disparity map is the inverse of the depth at that point in 

the reference image.  
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Figure 2.   Disparity Map Vector. 

A disparity map typically is shown as an intensity image where the intensity at each 

pixel is the magnitude of the disparity vector. Since disparity is inversely proportional to 

depth, greater intensity means the correlated point in space is closer to the viewer, and 

lesser intensity is farther from the viewer. The disparity map can be an accurate 

representation of objects in space and can be used effectively for object segmentation [9]. 

The disparity map measures the depth process, and thus, the process of evaluating 

disparity has an associated accuracy. Accuracy in a disparity map is the disparity map’s 

fidelity to the depth process and not the appearance of the disparity map itself. Thus, an 

accurate disparity map will closely sample the depth process. For this research, none of 

the experiments have a ground-truth depth for objective accuracy evaluation. Therefore, 

the accuracy of the disparity map is subjectively determined by comparing object edges in 

the disparity map with the corresponding object edges in the reference image manually. If 

the edges agree, the disparity map is accurate, and if they do not agree, the disparity map 

is not accurate. 

C. OBJECTIVE 

The objective of this research was to investigate a matching metric and computer 

vision algorithm each with acceptable accuracy and potential for efficient hardware 

implementation. The objectives of interest are:  

1. The correlation coefficient 's  accuracy in determining matches, 

2. The implemented metric hardware utilization and latency. 
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Also, the correspondence matching algorithms were looked at for:  

1. Computational complexity, 

2. Accuracy in determining depth from a stereo pair of images, 

3. Memory requirements. 

For this research, the ordinal correlation coefficient   was evaluated by the 

metric objectives (given a particular matching algorithm), and a traditional pattern 

matching algorithm and a dynamic programming pattern matching algorithm were 

evaluated under the correspondence matching algorithm objectives.  

D. C/C++ IMPLEMENTATION 

Since the correspondence problem solution can be very complex, we opted to use 

C and C++ due to our familiarity with said programming languages. Mathworks 

MATLAB was used to evaluate some parts of algorithms discussed in one dimension for 

illustrative purposes. We chose to run all stereo image experiments using C and C++ in 

the Microsoft Visual Studio design environment. C and C++ can implement the complex 

procedures of the correspondence problem and offer a reasonable degree of memory 

control. Many other implementations are feasible but not investigated in this research.  

E. RELATED WORK 

The correspondence problem has been researched heavily in the past using many 

different techniques. An overview of the various methods that have been investigated can 

be found in [10]. 

Dinkar N. Bhat and Shree K. Nayar [11] developed a distance metric   between 

rank permutations that demonstrated robustness in stereo correspondence matching. Their 

research also investigated the performance of   compared to other similar metrics using 

standard traditional pattern matching techniques. 

Changming Sun [12] developed an effective two stage dynamic program for 

window based pattern matching that finds the optimal solution to the correspondence 

problem with minimal computational complexity. 
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In other efficient implementation research, traditional matching approaches in [5] 

and dynamic programming approaches in [13] have been investigated. Traditional and 

dynamic techniques such as these have also been looked at for FPGA implementation but 

using different pattern metrics including Hamming distance, sum of squared distances 

(SSD) and sum of absolute differences (SAD). 

F. THESIS ORGANIZATION 

This thesis is organized as follows: computer vision concepts are introduced in 

Chapter II while ordinal measures are defined in Chapter III along with the operations 

necessary to compute the correlation coefficient .  An application of the ordinal to the 

traditional greedy method for solving the correspondence problem is illustrated in 

Chapter IV. Finally, an improvement to ordinal matching using dynamic programming is 

introduced in Chapter V. The conclusions and recommendations for further research are 

presented in Chapter VI. 
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II. COMPUTER VISION AND STEREO MATCHING 

A. PRINCIPLES OF COMPUTER VISION 

Computer vision is the discipline, similar to image processing and machine 

intelligence, which interprets data from sensors such as radar, sonar and cameras so that 

decisions can be made about the real world [14]. Some sources of computer vision are 

shown in Figure 3. There are many applicable control and guidance problems that could 

benefit from a computer capable of identifying or tracking objects within space. For 

example, an autopilot for a car could be an application of computer vision such that the 

guidance system would track the lines designating lanes in the road and steer the car to 

keep it driving safely within a lane. If the system used a video camera as the primary 

sensory input, this particular problem would require the computer to identify what parts 

of the video sequence were the lines on the road versus the background and other cars on 

the road. Typically, the computer would preprocess the video to accentuate a certain 

feature unique to the object(s) of interest, such as the edges of the lines. The computer 

could then perform thresholding of the pre-processed data to make a ‘yes’ or ‘no’ 

decision as to whether the feature belonged to a line on the road. Often, however, this 

form of segmentation is highly subject to statistical variation (lighting and camera 

parameters, such as gamma) that can disturb the decision-making ability of the computer. 

This is because most segmentation algorithms are forced to make assumptions about the 

video sequence being statistically stationary, which may not always be true. Nevertheless, 

computer vision algorithms endeavor to distill information from raw sensor data to a 

level that a computer can understand and base decisions on. 
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AC

Phased Array Radar Sonar Cameras and Video

Objects

 

Figure 3.   Computer Vision Examples–Radar, Sonar and Cameras. 

Decision making for segmentation in computer vision can be taken to a slightly 

higher level using labels to identify objects of interest in space. In the aforementioned 

line and autopilot example, a computer could identify a line against non-line components 

of an image by assigning a ‘1’ to a pixel representing a line and a ‘0’ to a pixel 

representing anything else. This is called a binary image, since all the pixels of the image 

are of the binary set  0,1 .  A computer can assign any arbitrary value (not restricted to 

‘1’ or ‘0’) to an object, such that unique objects are given a unique “label” value. 

Fundamentally, the computer will still be restricted to logical ‘yes’ or ‘no’ decisions 

regarding the sovereignty of objects in space, but labeling does give the computer the 

capacity to distinguish multiple objects from one another. This leads to a broader 

application of the computer’s decision-making capabilities. In the autopilot example, a 

line could be distinguished from other objects by means of a threshold, which forces all 

data above the threshold into one category and all data below the threshold into the other 

category. Perhaps, by means of another algorithm, image information could be distilled 

into a variety of categories, with each category having its own label. For example, objects 

can be labeled into categories based on their spatial ordering, increasing order from the 

top left of the image or video sequence to the bottom right. The computer can make 

smarter decisions by testing aspects of each category, or type, of element within the 
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distilled information. Categorical labeling provides a computer more latitude in object 

segmentation while still only using binary decision making. 

As an alternative to the basic edge detection and threshold pre-processing 

algorithm, algorithms that solve the correspondence problem can translate pixel intensity 

values of an image into categorical information unique to objects based on their location 

in space. Traditionally, a computer can segment an object from a video sequence or scene 

as pixels on or around said object change intensity. For example, motion can be detected 

as changing intensities of pixels around objects. Only one video sequence is necessary to 

detect motion of an object. However, given a special video sequence of two separate 

views of the same scene—called a “stereo image sequence,” a computer can potentially 

compute spatial attributes of objects in the scene and distinguish object uniqueness. This 

allows the computer to extract spatial properties of objects that can be categorized and 

labeled. 

Stereo images depict a scene or object in focus from two different angles. The 

focal points of a pair of cameras (such that they form a stereo pair) would ideally 

converge on the object or area in the space of interest. Since cameras sample the three-

dimensional world and translate it into a two-dimensional representation, each camera in 

a stereo pair distorts the scene in a subtly different way. The distortion between the two 

cameras’ perspectives is inversely proportional to the depth, representing the third axis 

bisecting the angle formed by the focal lengths of each camera (shown in Figure 4). 

 

Figure 4.   Stereo Pair of Cameras Observing an Object. 
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Stereo matching algorithms attempt to solve the correspondence problem. The 

correspondence problem is a challenging computer science problem wherein a set of 

points from one image are identified in the other image of a stereo pair. The human visual 

system solves the correspondence problem in real time by matching patterns and edges 

seen from one eye to patterns and edges seen from the other eye [14]. There are many 

different algorithms, but some robust algorithms rely on matching patterns within 

windows around each point of interest. Matches are determined using metrics that 

compute the similarity of a window from the left image to a window from the right 

image. The pair of windows with the greatest similarity is deemed a match and the 

disparity of the points can be computed. Disparity is defined as the translation of a point 

from its location in one image to its location in the other image and is inversely 

proportional to depth. Thus, a point that moves considerably between the two images is 

closer to the stereo pair of cameras than a point that moves only slightly or not at all. If a 

pixel represented an object located precisely at the intersection of the focal lengths of two 

cameras, the point’s translation would be equal to zero and thus represent both zero 

disparity and infinity depth. This effect is reduced as the two cameras’ focal lengths 

become parallel; but, as the focal lengths approach parallel, the sensitivity of the system 

to depth variation is reduced until nearly completely washed out by a very large constant 

disparity and zero field of depth. 

The stereo correspondence problem can be considered in either a general case or a 

specific case. The general case of the correspondence problem makes no assumption 

about the scene other than that there are physically points in the scene that correspond. 

The general case often requires more processing because the search for matches must 

occur in both dimensions of each image to be successful. The specific case makes use of 

known parameters about the cameras and the scene they observe such as the distance 

between the cameras, the focal lengths or the angles between the camera focal lengths 

[15]. This allows for more precise algorithms that can take advantage of triangulation to 

accurately compute the true depth of the scene. The specific case of stereo 

correspondence often employs algorithms that correct the scan lines (the true horizontal 

lines of the images with respect to their rows that make up the pixels in the image) of one 
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image with respect to the scan lines of the other [15], [16]. This allows the computer to 

consider the correspondence problem in only one dimension. For the purposes of this 

thesis, it is assumed that parametric data about the stereo pair is unknown and thus only 

the general case of the correspondence problem will be considered. 

Stereo matching algorithms solve the correspondence problem to create a 

disparity map representing all the depth information between the two cameras [10]. The 

disparity map is essentially distilled information about all the objects in view of the two 

cameras. A computer can process the disparity map by placing the measured disparity 

values into categorical bins representing sovereign objects and their locations. This 

segmentation of objects is thus based on spatial properties rather than intensity based pre-

processing typical edge detection and threshold illustrated in the car auto-pilot example. 

A disparity map of a real scene will predominantly consist of surfaces, seen as regions of 

constant or constantly changing disparity values. Distortions of disparity information 

within a region of constant disparity often represent an object in front of or resting on a 

surface. Ultimately, the disparity map typically offers a computer more information 

useful for object segmentation than any threshold algorithm, allowing the computer to 

discriminate objects using a labeling technique intrinsic to the level-like nature of 

disparity maps. An example is shown in Figure 5 where the disparity map is on the right, 

and its associated reference image from which it was derived is on the left. The higher 

intensities in the disparity map equate to larger disparity vectors and, in general, the 

closer the objects represented by those vectors. The original image on the left hand side is 

just one of a pair of stereo images (not shown for convenience).  
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Figure 5.   Example Disparity Map. 

B. STEREO MATCHING CHALLENGES 

Generally speaking, computers do not respond well to solving problems involving 

far from ideal conditions, a limitation particularly plaguing to the correspondence 

problem. In the best of circumstances, the correspondence problem requires the computer 

to measure a distortion, which, in other words, is the computer attempting to match two 

similar but often non-identical features. This requires the computer’s measuring 

mechanism to have some looseness in determining if features or patterns actually match, 

avoiding false negative matches, while sustaining some degree of discrimination so as to 

minimize false positive matching.  

While the problem is inherently problematic for a computer, computers and 

algorithms must contend with the fact that even miniscule variations between the two 

cameras can severely stunt an algorithm’s matching abilities. For example, if one camera 

has a slightly different focus from the other, it is possible that while the cameras are 

observing the same scene, there will be no matching patterns or features between the 

stereo pair of images. This effect will be observed later and is difficult to mitigate in the 

matching process. Another problem for algorithms solving the correspondence problem 

using statistical metrics for match determination is that matching could become 

problematic if images have varying statistical characteristics as shown in Bhat and Nayar 

[17].  
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Stereo images themselves introduce distortions as a result of sampling a three-

dimensional object or scene as a two-dimensional image. For this thesis, this type of 

distortion or error will be referred to as occurring outside the system and cannot be 

mitigated but can potentially be interpolated as a result of spatial correlation. There are 

four types of distortion: depth discontinuity, occlusion, specular reflection and projective 

distortion: 

1. Depth discontinuity commonly occurs when the normal of a surface is 
very close to perpendicular to one camera’s focal length but still visible 
and completely unobserved by the other camera. Surfaces that create depth 
discontinuities contribute to the non-linear nature of the disparity map.  

2. Occlusion occurs when an object or surface in the foreground covers 
objects or surfaces in the background so that the background behind the 
object appears differently to either camera. Thus, no matching points exist 
in the region of occlusion when an occlusion occurs.  

3. Specular reflection causes a pattern to occur in differing locations in each 
image while not being consistent with the true depth profile of the scene 
such as a mirror.  

4. Projective distortion, the most common form of distortion in stereo 
matching and partially touched on before, occurs as a result of sampling a 
three dimensional object or scene as a two-dimensional image.  

These distortions are illustrated in Figures 6 through 9. 

 

Figure 6.   Example of Depth Discontinuity. 

 

Figure 7.   Example of Occlusion. 
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Figure 8.   Example of Specular Reflection. 

 

Figure 9.   Example of Projective Distortion. 

Distortions frequently introduce matching error that will need to be compensated 

for. Earlier implementations of stereo matching algorithms handle distortion in hindsight 

as though the information did not exist. More advanced algorithms overcome error by 

finding the optimal solution (match) even when a good match does not exist [18]. Both 

implementations will be investigated in detail in later chapters. 

C. DISPARITY MAPS AND OBJECT SEGMENTATION 

The disparity map is inversely proportional to the depth observed by the stereo 

pair of cameras. A disparity map will be referred to in this thesis as a solution and is 

commonly very dense, having a solution for the translation of every point in an image to 

every corresponding point in the other stereo image. Disparity maps are made up of 

vectors in Cartesian coordinates but are rendered as an intensity image such that the 

magnitude of the vectors at each point is proportional to the intensity. For example, if an 

arbitrary point P  in Image 1 were to move three pixels right and one pixel down to P  in 

Image 2, the intensity of the disparity map at that point would be proportional to the 

magnitude 3.16 as demonstrated in Figure 10. 
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Figure 10.   Example of a Disparity Vector. 

Because natural images generally have high spatial correlation in two dimensions, 

this generalization applies to the third dimension measured by stereo correspondence 

algorithms. As a result, objects commonly have similar or consistent disparity vectors. 

Computers can take advantage of this spatial correlation to segment objects based on the 

magnitude of the disparity vectors as depicted in Figure 11. 

 

Figure 11.   Example Stereo Pair and Disparity Map with  
Distinctive Object. After [19], [20]  

Notice that the object in the foreground can be distinguished from the 

background because it is represented by a region of consistent disparity vectors. Unlike 

edge detection based methods that use intensity values of pixels of an image, the object 
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is spatially segmented from its surrounding using the disparity map because the 

information in the disparity map is directly related to depth.  

Another feature of disparity maps is that the precision of a disparity map increases 

as the resolution of the reference images (the stereo pair) increases. Higher resolution 

images can have objects consisting of more pixels and patterns. Thus, more pixels means 

that while the location of an arbitrary point is constant in space, the number of pixels 

separating points P  and P  representing the point increases with the resolution of the 

stereo pair as shown in Figure 12. Subsequently, the disparity vectors become 

proportionally more precise. 

 

Figure 12.   Comparison of Low and High Resolution Stereo Images. 

In the next chapter, the ordinal coefficient   is introduced. The ordinal is a 

logical metric that has advantages for hardware implementation. A proposed architecture, 

also introduced in the next chapter, computes the correlation coefficient   in parallel and 

fully pipelined on an FPGA. 
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III. ORDINAL MEASURES AND THE CORRELATION 
COEFFICIENT K 

A. WINDOW COMPARISON METHODS 

Area based matching algorithms use windows to match corresponding points 

between two stereo images. Ideally, in a stereo pair with infinite spatial resolution, a pixel 

alone would be uniquely identifiable and, thus, can be matched from one image to 

another. However, since real pixels have finite spatial resolution, they do not carry 

enough information to be matched without additional pattern-based information of  

the neighborhood surrounding a pixel. Thus, point-by-point matching for stereo 

correspondence in the time domain becomes pattern matching with window based 

methods, matching patterns around points shown in Figure 13. 

Reference Pixel

Reference Window

 

Figure 13.   Defining a Pattern using a Window around a Point in the  
Reference Image. After [19] 

Window based methods generally compute a coefficient proportional to the similarity 

of patterns between two windows [10]. This coefficient is called a correlation coefficient. 

Thus, finding a “best match” is an optimization problem where a match is determined by 

maximizing (or minimizing) a matching method’s correlation coefficient. Often in images 
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with very high signal-to-noise ratios (SNR), simple optimization algorithms are enough to 

determine matches. Also, window based methods generally rely on a standard pattern 

matching technique. First, a reference point is chosen sequentially from the reference image 

(perhaps the left image for demonstrative purposes). A window is then built around this point 

so that a reference pattern is used to represent that point. Next, the target point(s) are chosen 

within a search range of the target image (the right image in this example). Windows are also 

constructed around these target points (overlapping allowed) to form representative patterns 

around each target point. Finally, the window based correlation computation is applied to all 

target patterns (windows), comparing each target pattern with the reference pattern. The 

process is illustrated in Figure 14. A match is determined by maximizing the correlation 

coefficient among all possible matches. The pattern based window matching is analogous to 

matching the individual points or pixels of the two images provided that the windowing 

scheme is consistent. 

Reference Image

Reference Pixel and 
Window

Target Image

Target Windows and 
Search Range

 

Figure 14.   Pattern Matching Technique. 

Window matching methods use search ranges to identify the best match among a 

candidate region of possible matches. Often, search ranges account for the majority of 

computational complexity in any pattern matching technique. Search ranges manifest as 

deeply nested loops or loops within loops. For example, for every reference point in one 

image, the algorithm will need to find its best match within a search range of five rows 
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and fifteen columns. This equates to 75 simple match calculations per pixel in the 

reference image, which can be a staggering increase in computational time even for small 

images. Often, simple matching calculations are not enough and more complex matching 

techniques are needed and will be explored in depth later. Search ranges also intensify the 

computational issues of the chosen correlation coefficient.  

The correlation coefficient computed for a window appraises the similarity of the 

patterns within the pair of windows. Many of these measures use statistical means to 

compute the correlation coefficient such as the sum of absolute differences (SSD) given 

by  

  2
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or the normalized correlation coefficient (NCC) given by 
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 (2) 

Notice that the computations for Equation (2) are not trivial. Other metrics use filtering 

techniques to compute the similarity to a reference window at each point in the target 

image. These methods are subject to outliers in pixel intensities such as an image pair 

corrupted with salt and pepper noise. Other measures such as the ordinal are dependent 

on the ranking of pixels and their relative ranking to each other. Ordinal metrics are very 

robust to statistical variations between the two images such as gamma and contrast issues 

but can be frustrated by additive white Gaussian noise (AWGN) as shown in Bhat and 

Nayar [11]. Statistical measures can be very computationally expensive, requiring many 

multiply and add operations per window comparison. The measure of interest for the 

research conducted is the ordinal metric that uses the rank permutations of pixels in 

windows to compute the correlation coefficient .  
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B.  ORDINAL MEASURES WITH K 

Ordinal measures are used to compute and compare the rank permutations of 

candidate windows to compute the correlation coefficient . The ordinal   has been 

shown to be very robust in comparison to statistical correlation metrics such as SSD and 

NCC [11]. The ordinal also has computational advantages for hardware implementation 

and robustness in choosing matches that are investigated in later sections. 

The goal is to define a measure of correlation between the two sequences which is 

least sensitive to random variations of individual values and, at the same time, easy to 

compute on sequential and parallel machines. 

This leads to an approach based on the ordering of the values rather than the 

values of the sequences themselves. For example, take three sequences of length three as 

1 2 3[2.5, 3.2,1.7],  [1.9, 5.1,0.8],  and [0.1,2.5,0.9].x x x      One can see that, by the 

ordering of the values, 1x  and 2x  are similar, while 1x  and 3x  are not since, in this case 

                 1 1 1 2 2 2 3 3 32 3 1 , 2 3 1 , and 1 3 2 .x x x x x x x x x       It can be seen that 

the sequences 1x  and 2x  have the same “ordering” of values while 3x  is different. 

In this section, the basic theoretical framework of definitions and metrics is 

introduced so that the similarities of sequence ordering can be assessed. In particular, the 

following is defined: 

Definition 1: For any integer n  call nS  the set of all permutations of the indices 

n,...2,1 . For example,  3 (1, 2,3), (1,3, 2), (2,1,3), (2,3,1), (3,1, 2), (3, 2,1) .S   Clearly, the 

“cardinality” of nS  (i.e., the number of elements in the set) defined as nS  is computed 

as: 

 | | !nS n  (3) 

Definition 2: Given a set of index permutations nS , call n
n S ),...,,( 21    

an element of the set. For example, (again for 3n ) choosing )2,1,3( corresponds to 
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1 2 33, 1, 2.      By the very nature of these definitions, each permutation nS  

can be seen as a mapping between the indices ),..,2,1( n  and the ordering is 

 1 2: (1,2,..., ) ( , ,..., ).nn     (4) 

Any sequence x  of real numbers can be converted to its associated permutation 

  by  

          
1 1

n i
i

j j

J x i x j J x i x j
 

     , (5) 

where   1J B   if the expression B  is true,   0J B   if the expression B  is false, and i  

is the specific sample in the vector x  being evaluated.  

An example of transforming two data sets 1x  and 2x  into each respective rank 

permutation 1  and 2 is shown in Figure 15. 
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Figure 15.   Example Rank Permutation Conversion. 

This leads to the definition of inverse permutation as follows: 
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Definition 3:  Given any permutation ,nS   the inverse permutation nS1  is 

defined as the mapping  

 1 1 2: ( , ,..., ) (1, 2,..., )n n      (6) 

where ki   and   i
k
1  for , 1,..., .i k n  

For example, again in 3S ,  the permutation )2,1,3(  can be seen as the 

mapping : (1,2,3) (3,1,2).   Its inverse is the mapping  )3,2,1()2,1,3(:1   which, 

after reordering, becomes 1 : (1, 2,3) (2,3,1).    

This leads to the definition of the positive and negative identity permutations 

 1, 2, ,I n    and  , 1, , 2,1 .I n n     The identity permutations have the property 

that the inverse of each identity permutation is itself such that 1I I
   and 1 .I I

   An 

example of the processing of the inverse permutation is shown in Figure 16. 
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Figure 16.   Example Inverse Permutation 1

1
 . 

Definition 4:  Any two permutations can be combined into a single permutation s  

such that ns S  where s  defines a permutation 2  mapped to 1
1
  and re-ordering the 

indices of s  as 1,2, , .n  The formulation is given by 

         1 21 1 1 1 2
1 1 1 2 2 2: , , , , , ,

n ns            (7) 

 where 2
i ks   and  1

1 .
i

k    



 25

For example, given  1
1 2,3,1    and  2 1,3, 2 ,   then    : 2,3,1 1,3, 2s   and re-

ordering the indices of s  as 1, 2, , ,n  we get  2,1,3 .s   An example of computing the 

combined permutation s  from 1
1
  and 2  is shown in Figure 17. 
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Figure 17.   Example Combined Permutation .s  

Definition 5: A distance vector md  is the relationship between s  and the identity 

permutation I . When ,s I  the distance is zero such that  0,0, ,0md   , indicating 

perfect positive correlation, and when ,s I  md  achieves a maximum distance of ,
2

n 
  

 

indicating perfect negative correlation. Finally, i
md  is defined by  

    
1 1

i i
i j j
m

j j

d i J s i J s i
 

       (8) 

where   1J B   if the expression B  is true and   0J B   if the expression B  is false. 

For example, given  2,1,3s  , then  1,0,0 .md    

Definition 6: A normalized correlation coefficient   is the measure of correlation 

between 1  and 2  taken as the maximum distance in the md  vector. If the input random 

sequences are perfectly correlated,   takes on the normalized value 1. If the input 

random sequences are perfectly un-correlated,   takes on the normalized value 1.  The 

coefficient   is defined as 

   1
1 2

2max
, 1

2

n i
i md

n
    

  
, (9) 
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where 1  and 2  are permutations to be compared. Finally, the overall flow chart of data 

from sample data windows 1x  and 2x  to computing the correlation coefficient   is 

shown in Figure 18.  

 1x n 16, 4, 7 2, 9, 4  2x n

1 3, 1, 2 1, 3, 2 2

2, 1, 3s

1, 1, 0md

-1
 

Figure 18.   Ordinal Processing Flow Chart. After [11] 

C. HARDWARE IMPLEMENTATION ADVANTAGES 

Computation of the correlation coefficient   has significant advantages for 

hardware implementation. First, the coefficient   can be computed in a purely logical 

fashion requiring no summations or multiplication. Thus, in a hardware implementation, 

only basic logic slices of comparators and multiplexers are needed to realize the ordinal 

measure. For illustrative purposes, the hardware implementation will be explored. 

1. Rank Permutations 

The first component needed to compute the correlation coefficient   is to 

compute the rank permutations of each window. In software algorithms, rank 

permutations can be calculated quite quickly, especially when using the counting sort 

algorithm. Computation of rank permutation is inefficient with  2n  complexity. With 
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hardware, the naïve sort’s worst case scenario complexity is taken and spread out 

spatially to compute the rank permutation in full parallel to achieve computational 

complexity  1  in time, or one clock cycle (given a typical sized input of n  8-bit pixels 

to be sorted), but  2n  in space. For stability in the rank permutation, the hardware 

requires an additional  2n  instantiated complexity but with no additional 

computational time. The architecture for computing the rank permutation of a two pixel 

window is shown in Figure 19. 
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Figure 19.   Rank Permutation Architecture. 

The rank permutation circuit shown in Figure 19 needs eight comparators to 

compute the ranking of two pixels. The input to the circuit is each 8-bit pixel intensity in 

the window to be ranked. Each comparator outputs a logic ‘1’ if the inputs satisfy the 

Boolean expression in the comparator. The ranking of a pixel at 1
i  is the summation of 

the number of pixels in the window less than the thi  pixel plus the number of pixels equal 

to the thi  pixel. The summation is carried out by a logical “ones counter” circuit rather 

than actual adders. For very large bit vectors (over 128 bits), the ones counter circuit can 
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be realized as a sum-of-products or product-of-sums combinational circuit to minimize 

delay. Also, the equal comparators are masked to only be capable of summing up to i . 

This ensures stability in the rank permutation by assigning rankings of equal intensity by 

the order of the pixels in the window. The output of the rank permutation is a vector of 

ranks encoded in binary coded decimal. 

Computation of correlation coefficient   requires two rank permutation 

components. The rank permutation hardware makes up the majority of the metric’s 

hardware implementation logic requirements. Because of the 22n  instantiated complexity 

of the architecture, larger windows of nine by nine or 11 by 11 require significant logic to 

fully implement. With the proposed architecture, computation can typically be handled in 

one clock cycle for nine by nine or 11 by 11 sized windows of pixels. 

2. Inverse Permutation and the Combined Permutation s  

The inverse permutation is tricky to compute in hardware. The simplest 

implementation of the inverse permutation is to define two registers, one n  sized register 

and one 2n  sized register. For each rank, a set of n  selectors compare the ranking at 1
i  

with a set index i . If the ranking is equal to the index, the rank is multiplexed to the new 

location by 1
i  and all other rankings in the target portion of the register are set to zero. 

The first register holds the rank permutation, and the second register holds an expanded 

form of the inverse permutation. The expanded inverse permutation is to ensure that flip-

flops in the register are never driven by more than one multiplexer. The expanded inverse 

permutation is condensed by logical or from 2n  to n . A proposed architecture for 

computing the inverse permutation for a window of two pixels is shown in Figure 20. 
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Figure 20.   Inverse Permutation Architecture. 

Next, the combined permutation is easily calculated by multiplexing the non-

inverted rank permutation with the inverted permutation as the control. The proposed 

combined permutation architecture is shown in Figure 21. Note that the inverse 

permutation elements  11
1
  and  21

1
  can each only take on values  1, 2  unless a bit 

error has occurred. The inverse permutation is directly ported into n  selectors that are n  

wide, passing the associated rank to the output with respect to the thi  index of the inverse 

permutation. 
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Figure 21.   Combined Permutation Architecture. 

3. Distance and Correlation Coefficient   

The most complex part of calculating the correlation coefficient   with hardware 

is computing the distance vector. For this, a property of the distance calculation is 

exploited to parallelize the computation. The distance from the identity permutation is 

graphically illustrated in Figure 22. 
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Figure 22.   Distance Scatter Plot. 
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The distance vector between the combined permutation s  and the identity 

permutation is composed of the number of ranks bounded by the region defined by 

 0, , ,x x i y i y n     or the region defined by ABCD in Figure 22 (ranks falling on 

the bottom boundary are not counted). Since the s  permutation is compared to the 

identity permutation ,I  the inverse permutation 1s  represents the ranks out of place 

with respect to I  but not bounded by the region. Thus, the number of ranks in s  that 

occupy this region is equal to the number of ranks out of place up to index i  minus the 

number of 1s  ranks out of place up to index .i  Thus, the distance vector is composed of 

two separate vectors which are defined as 

 i i i
posJ s I   (10) 

and 

  1 ii i
negJ s I  . (11) 

Then, the distance id  at any index i  is defined as 

 
0 0

.
k i k i

i k k
pos neg

k k

d J J
 

 

    (12) 

Equations (10) and (11) are graphically illustrated in Figure 23 using two scatter 

plots of the s  permutation and the 1s  permutation. The J  vectors can be joined in 

parallel using Equation (12). The parallel merging of the J  vectors is graphically 

illustrated in Figure 24. 
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Figure 23.   Computing the J  Vectors. 
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Figure 24.   Calculating the Distance Vector in Parallel. 

In hardware, the summations of the two J  vectors is trivial since any element in 

either vector is  0,1 .  Thus, the summation is logically a ones counter, which can be 

implemented without the use of adders or a clock. A proposed hardware implementation 

is shown in Figure 25. 
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Figure 25.   Distance Hardware. 

Finally,   is computed by taking the maximum of the distance vector using a 

maximums array circuit that logically selects the greater md  of a pair iteratively by stages 

until the maximum is found. The maximums circuit requires 2log n    stages to compute 

where each stage computes a partial maximum with each clock cycle. The   coefficient 

need not be normalized to fall between [ 1,1]  since this would require floating point 

computations. Instead, the raw maximum distance is used, and the optimization of   

occurs when the maximum distance is minimized rather than maximizing the normalized 

coefficient. 

The proposed implementation suggests one clock cycle for both rank 

permutations, two clock cycles for the combined permutation, two clock cycles for the 

distance vector and 2log n    clock cycles to compute the maximum distance for a total 

latency of 25 log n     
at a clock frequency of 100 MHz (clock period of 10 

nanoseconds) in an Altera Cyclone family FPGA. The proposed architecture is also fully 

pipelined and can compute a result every clock cycle when the pipeline is full. The 

proposed architecture for a nine by nine ordinal ( 81n   and operating on 8-bit pixels) is 
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synthesized using the Altera Quartus II 8.1 software for several Altera devices and the 

logic utilization is tabulated in Table 1 to illustrate the metric’s logic requirements. The 

ordinal of size nine by nine could feasibly be implemented in an Altera Cyclone II FPGA, 

an economical FPGA, while reserving the FPGA’s multipliers and most register 

resources for other purposes such as image re-sampling to form Gaussian pyramids which 

are explained later. 

Table 1.   Logic Utilization of Ordinal   in Popular Altera Devices. 

Device Combinational 
ALUTs 

Registers Multipliers DSPs 

Cyclone II 
(EP2C35F672C6) 

12,065 / 35,000 
(~34%) 

442  0 / 70 
(0%) 

N/A 

Cyclone III 
(EP3C120F780C7) 

12,065 / 120,000 
(~10%) 

442 0 / 576 
(0%) 

N/A 

Stratix III 
(EP3SL150F1152C3ES) 

7,986 / 113,600 
(7%) 

480 / 113,600 
(< 1 %) 

N/A 0 / 384 
(0%) 

 

Now that the ordinal measure has been introduced, in the next chapter the 

correlation coefficient   is applied and a basic matching algorithm that uses a traditional 

greedy method to solve the correspondence problem is investigated. 
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IV. ORDINAL MATCHING WITH TRADITIONAL MATCHING 
STRATEGY 

Solving the correspondence problem has been studied extensively in computer 

science for the last four decades [10]. In traditional matching strategy, stereo matching 

algorithms applied a “greedy” method for choosing correlated windows. A reference 

window is chosen from the reference image and passed over a region in the target image, 

computing the correlation values of the reference window to a set of candidate windows. 

While variations exist that impose certain constraints, the fundamental technique is to 

choose the match in the target image region with the maximum correlation value. At the 

time of the ordinal’s development, a traditional greedy method prevailed among window-

based approaches to solving the correspondence problem. 

A. TRADITIONAL MATCHING STRATEGY 

Traditional matching strategies use several techniques to enhance the greedy 

method. Many of these techniques apply constraints to the matching process to reduce the 

chance of a false match. Some research has applied probabilistic methods to decide the 

likelihood of a true match, while other approaches have applied Kalman filtering to help 

reduce false matches [21], [22]. However, these techniques make assumptions about the 

depth information between the stereo pair as a linear process that can be modeled. The 

depth process behaves somewhat linearly in image regions with consistent intensity 

values but can behave very non-linearly along edges and sharp intensity changes common 

of depth discontinuities. For example, Kalman filtering naturally results in blurring of the 

depth wherever a depth discontinuity exists. Thus, stereo correspondence algorithms can 

are hampered by techniques that attempt to improve matching under certain conditions 

but do not adequately consider the depth process as a whole. For this research, strategies 

that make as few assumptions as possible about the depth process are considered, and 

their computational complexity investigated. 
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1. Multirate Matching With a Gaussian Pyramid 

Some traditional matching techniques are ubiquitous among nearly all stereo 

correspondence algorithms. Multirate processing, in the sense of processing signals at 

different resolutions, has been shown to both greatly improve matching while also 

reducing computational complexity [10]. Multirate entails low-pass filtering the stereo 

pair and down sampling the pair by a integral rate a certain number of times to form a 

pyramid structure of coarse to fine resolutions. In window based methods, multirate 

matching offers more image intensity information at each coarser level while maintaining 

a constant window size at reduced computational complexity. Matching using a coarse-

to-fine scheme gives matching algorithms a “first-look” of the depth process without 

varying the size of windows. The matching process then proceeds to finer resolutions 

(larger dimension images) using the solution of the previous coarse resolution as a 

constraint. Multirate takes advantage of the spatial correlation between the different 

resolutions’ solutions and rules out matches in subsequently finer resolutions that are 

determined to be too far in disagreement from the coarse resolution solution. A Gaussian 

pyramid is illustrated in Figure 26. 
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Level 1

Level 2 (coarsest)

256 x 256

128 x 128

64 x 64

 

Figure 26.   Typical Gaussian Pyramid. After [19] 
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Before down-sampling an image, it is necessary to low-pass filter the image to 

reduce aliasing effects. Aliasing can introduce artifacts that distort the matching process 

by attempting to match the aliased artifacts rather than the valid image information. Also, 

the aliasing from down-sampling one image in a stereo pair can be substantially different 

from the aliasing and information in the other image of the stereo pair. A common 

method in stereo to reduce this aliasing is to filter both images with a two-dimensional 

Gaussian pulse type low-pass filter. This pulse is defined by  

  

2 2
1 2

2

2 2

4

1 2,

n N n N

K n n e


              
 
 
   (13) 

The standard deviation is arbitrarily chosen to reduce artifacts. For this research, a nine 

by nine pulse kernel  1 2,K n n  (filter window where N  is the dimension of the window) 

with a standard deviation of 0.7 was used with a down-sampling rate of two such that 

each coarser image is successively half the width and half the height of its finer 

counterpart. The pulse and frequency response is shown in Figure 27. 
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Figure 27.   A Gaussian Pulse (9x9) and its Frequency Response. 

The pulse is convolved over the whole image, zero padding the image edges to 

reduce edge effects. After filtering the image, pixels are extracted at the specified rate in 
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the horizontal and vertical directions to form a lower resolution image. The two-

dimensional convolution operation is defined by 

      
1 2

1 2 1 2 1 1 2 2, , , .
k k

y n n I k k K n k n k
 

 

     (14) 

The matching process proceeds from the coarsest to the finest image. At the 

conclusion of the solution of the correspondence problem at a particular resolution, the 

solution is multiplied by two and up-sampled to the next highest resolution using a zero-

order hold. The choice of matches at the finer resolution is confined to the neighborhood 

of the coarse resolution solution. The initial solution prior to the coarsest resolution is 

assumed to be zero at every point in the reference image. Each finer resolution solution is 

a refinement of the previous coarse resolution solution. Thus, getting the correct matches 

at the coarsest resolution is of paramount importance. A matching error (false match) at a 

coarse resolution often results in the error propagating to all subsequent finer resolutions. 

Loosening restrictions on neighborhood matching helps reduce the impact of an error at a 

coarse resolution. 

2. Back Matching Strategy 

The greedy method can be constrained by enforcing the matches in the forward 

direction to agree with matches in the reverse direction (a strategy used by Bhat and 

Nayar [11]). For example, a target match chosen in the right image by the greedy method 

must also match by the greedy method within a certain tolerance in the left image when 

the right image is taken as a reference. This process is illustrated in one dimension in 

Figure 28, which shows two candidate matches to window 3 in the reference vector: 

window 4 and window 6 in the target vector. Window 6 is chosen since it matches back 

to a closer neighborhood. 
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Figure 28.   Illustration of the Back Matching Strategy. 

The back matching strategy helps eliminate candidate matches that do not agree in 

the reverse direction. This commonly occurs in occlusion regions where an occluded 

pattern may not exist between the two images. Therefore, the back matching strategy aids 

in preventing occluded patterns from choosing false matches. Back matching generally 

improves the probability of choosing a true match under normal conditions while not 

making any assumption about the underlying depth process. 

The back matching strategy is the core of the traditional algorithm approach to the 

correspondence problem used in this research. Given a random, one dimension signal 1x  

as an input to the algorithm and a shifted version of 1x  corrupted by noise as the other 

input signal 2 ,x  the associated calculated disparity d  and correlation coefficient   for 

every matched pattern are shown as the output of the algorithm. Figure 29 shows a basic 

block diagram of the inputs and outputs of the algorithm. 

Traditional Back 
Matching Algorithm

x1

x2

d

K  

Figure 29.   Block Diagram of Basic Back-Matching Strategy Algorithm. 
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Each disparity d  is calculated by rectangular windowing nine samples from the 

reference signal 1x  and computing the   across the entire target signal 2.x  The top three 

matches by the correlation coefficient   are recorded. Each top match window is taken 

as a reference and back matched by computing the correlation coefficient .  If the back 

matching calculates the top match in the reverse direction to be within one pixel of the 

original reference window with respect to each window’s first sample, then a disparity d  

is calculated by taking the index of the first sample in the matching window in signal 2x  

minus the index of the first sample in the matching window in signal 1.x  The associated 

correlation   for the match pair and disparity d  are recorded with respect to the first 

sample of the window in signal 1.x  The result is shown in Figure 30. It is clear from the 

example that errors still occur using the back matching strategy since the true disparity is 

2  for all points. The last eight samples are zero due to edge effects with the size 9w   

window. 
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Figure 30.   Illustration of the Back Matching Strategy on Random and  
Noisy Vectors. 
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3. Computational Complexity and Optimization 

The computational complexity of window based matching methods can be very 

large. If a reference window has dimension w  in rows and columns, then from a 

reference image of 1M  and 1N  rows and columns, respectively, there are 

   1 1M w N w    such reference windows in the reference image. Also, using the same 

sized target image and target windows, there are    2 2M w N w    target windows for 

comparison. If each reference window is tested against all possible target windows, the 

complexity is      1 1 2 2M w N w M w N w     where 1M  and 1N  are the rows 

and columns of the reference image, respectively, and 2M  and 2N  are the rows and 

columns of the target image, respectively. This complexity is often excessive for a 

normal set of images, and a reference window need not be tested against every possible 

window in the target image. 

Proper optimization of the algorithm significantly reduces the computational 

complexity into a manageable subset of necessary comparisons. First, down-sampling the 

reference and target images reduces the number of rows and columns in each image and 

reduces the number of reference and target windows that need to be compared. Thus, the 

complexity at any level is 1 1 2 2
1 1 1 1l l l l

M N M N
w w w w

r r r r   

              
     

 where r  is the 

down sampling rate, w  is the dimension of the window and l  is the level being 

evaluated. This is due to the fact that an M  by N  image down-sampled l  times by r  

has dimensions 
l

M

r
 and 

l

N

r
. Second, applying a search range such that a candidate match 

can only exist within a search range D  around the reference window reduces the 

complexity to only the target windows within the search range D  that need to be checked 

for each reference window. The resulting optimized complexity for down-sampling and 

applying a search range is simplified to  ' '1 1
1 11 1l l

M N
w w D M N D

r r 

          
   

. 

Ideally, the search range D  is chosen to account for the maximum expected disparity 
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(translation of any point in space between the reference and target images). The search 

range is reduced from the finest resolution at the same rate as the down-sampling of the 

images to form the Gaussian pyramid. For example, if a coarse level is half the resolution 

in rows and columns of its next finest level, the search range within the coarse level 

should be only half the search range of that at the next finest level. A search in the target 

image for any disparity greater than the maximum disparity offers no additional 

information useful for constructing the solution for any level.  

Back matching increases the complexity of solving the correspondence problem 

by multiplying the complexity by at least two. This complexity is increased even more if 

a top set U  of matches (the matches depth) are tested in the reverse direction with each 

candidate match independently tested in the reverse direction for an overall algorithm 

complexity of  MNDU  where M  is the rows of the image, N  is the columns of the 

image, D  is the search range for each reference window and U  is the set of candidate 

matches that need to be back tested for each reference window. In practice, the number of 

top candidate matches that need to be tested in the reverse direction is usually no more 

than three since the majority of successful back matches are resolved in the first or 

second attempt. Failure to find a reverse match by the third attempt usually indicates that 

no match for the reference window exists in the target region. If a candidate match is 

found to be within tolerance in the reverse direction, the remaining candidate matches are 

not tested to reduce computational complexity. 

Another computational complexity of note is the memory requirements of the 

traditional method. Because of the high matching noise as a result of the back matching 

strategy and the need for error correction, the entire solution for a level in the Gaussian 

pyramid must be computed before spatial error correction can begin. Error correction is 

discussed later in the chapter. Thus, in addition to the memory storage of every image 

within both Gaussian pyramids, the solution at every level must also be stored.  

The memory requirement of the Gaussian pyramid of whole images is 4 3 times 

the memory storage of the highest resolution. This comes directly from the geometric 

series of the Gaussian pyramid decomposition where 2r   for each dimension. Since the 
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solution matrix is of the same dimension of each corresponding level in the pyramid, the 

solution occupies a proportional amount of memory to one of the stereo Gaussian 

pyramids. 

B. ORDINAL LIMITATIONS WITH TRADITIONAL MATCHING 

It has been shown that ordinal measures are very robust for pattern matching. A 

good pattern matching algorithm is the heart of a stereo matching algorithm that seeks to 

solve the correspondence problem for computer vision. Yet, the ordinal only describes 

how matched two patterns are. Thus, untextured or low texture regions of images with 

low frequency content can appear to have no discernible true match to a window based 

pattern matching scheme. This fact suggests that although the ordinal, a window based 

metric, is highly non-linear, it does have a minimum reliable frequency response. For 

example, given two blank images with no frequency content and no features at all, the 

depth map between the two images is undefined. Furthermore, pattern matching can also 

be unreliable in highly uncorrelated patterns. Given a reference and target window with 

no consistent information between the two, the measure of the patterns should ideally be 

perfectly uncorrelated. In practice, uncorrelated inputs can appear to have some matching 

behavior, which can appear to the ordinal as a potential match. 

1. Untextured and Low Texture Image Regions 

Untextured and low texture comparisons can produce unexpected results for 

window based matching schemes. A pattern matching algorithm with a set of windows 

that have no significant information for matching yields inconclusive results. In the case 

of the ordinal, comparing untextured data appears to be a perfect match, which can 

mislead the decision process. An example of untextured inputs 1x  and 2x  and the point 

by point comparison     1 2: 1 , : 1x n n w x n n w     is shown in Figure 31. 
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Figure 31.   Example of Untextured Inputs and Resulting Point by Point  . 

Applying the back matching strategy does not help the matching of untextured 

patterns. This is illustrated in Figure 32 of totally untextured signals and Figure 33 with a 

shifted step where only the step itself has valid data. 
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Figure 32.   Back-Matching Strategy on Totally Untextured Signals. 



 45

The first two values of the   and disparity vectors result from the forward 

matching pass choosing the first three matches in 2x  since all possible matches from 1x  

to 2x  are equal. In the backward matching pass, each back match chooses the first index 

in vector 1x  as the top match. Thus, the first disparity is the first sample in 1x  matched to 

the first sample in 2 ,x  and the second disparity is the second sample in 1x  matched to the 

first sample in 2x  again. All subsequent disparities fail to find a match because they all 

continue to choose the first index in 1x  as the top back match but exceed the constraint of 

being within one sample of the original sample in 1.x  
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Figure 33.   Back-Matching Strategy on Shifted Step in Untextured Data. 

The shifted step provides some valid detail for the matching algorithm to match. 

The step is detected so long as the step is within the window. The samples before and 

after the step are unmatched due to lack of significant matchable detail. The algorithm 

correctly determines the step to have translated two samples to the right for a disparity of 

plus two. 
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The basic approach to mitigating the effect of untextured matching is to avoid processing 

reference windows that do not have significant enough details necessary for matching. In 

this research, a basic measure of window information ,R  is given by 

         
2

2

0

1
 where  1 .

2

n

i

R u i u u n x n x n
n





    
   (15) 

This measure, resembling the variance of the derivative, is applied and thresholded (i.e., 

compared to an arbitrarily determined minimum measure of information). If the 

information in the window is above a minimum measure of information, the matching 

and back-matching algorithm is allowed to proceed. Otherwise, the algorithm skips the 

reference window and records a disparity of zero and correlation coefficient of 1.  The 

missing solution is accounted for later by error correction methods. A minimum amount 

of information of 0.05 is chosen for window sizes of 81 samples. 

2. Uncorrelated Regions 

Uncorrelated inputs can be another problem for window based matching methods 

and is directly related to the chosen metric’s discrimination of dissimilar patterns. The 

ordinal performs well in discriminating uncorrelated patterns but does still report 

correlation even when the signals are truly independent. Two possible causes for 

uncorrelated inputs are occlusions and image edge effects.  

Uncorrelated inputs commonly produce a moderate level of correlation but rarely 

are perfectly matched. An example pair of input vectors independently and randomly 

generated is input into the algorithm, and the resulting outputs are shown in Figure 34. 
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Figure 34.   Back-Matching on Uncorrelated Inputs.  

Generally, uncorrelated inputs produce a maximum   correlation of 0.5. Thus, a 

threshold of the   values themselves to be at least 0.5 in order to be considered a valid 

match candidate helps reduce the chance that uncorrelated and unrelated patterns do not 

factor into the final solution. This number concurs with tests performed by Bhat and 

Nayar [11] on random dot stereograms with no correlated regions. 

C. TRADITIONAL AD-HOC ERROR CORRECTION TECHNIQUES 

Since the greedy method introduces significant opportunity for error and that error 

can propagate and multiply from one level in the Gaussian pyramid to the next, error 

correction at the conclusion of each level is necessary to improve the quality of the final 

disparity maps [21]. Several techniques for error correction are considered including 

preventive techniques such as avoid matching windows with minimal information and 

recovery techniques such as masked average and linear hole filling. 
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1. Window Information, Search Ranges and Median Filtering 

As described before, window information is measured with Equation (13). When 

the algorithm computes the minimum information and determines not enough 

information for matching exists, it stores a correlation value of 1  indicating the need for 

correction. 

Search ranges also help to prevent error by avoiding searches for matches outside 

the maximum possible disparity at any given level. Since patterns can repeat in images, 

limiting the search range reduces the chance of choosing a false match within a repeating 

pattern.  

Another effective technique for mitigating error is to median filter the solution 

using windows of seven by seven or nine by nine. A median filter sorts the data (disparity 

in this case) from least to greatest and picks the median value. Median filters are non-

linear filters that reduce outlier noise. The median value is stored at the centroid of the 

median filter. Median filter is done after the solution has been computed but before any 

further ad-hoc error correction. 

2. Masked Averaged Hole Fill 

Masked averaged hole filling corrects the disparity map by determining invalid 

regions in the disparity map and filling the “holes” formed by the invalid data with 

immediately adjacent valid data. The segmentation generates a mask of values that need 

to be correct through spatial correlation. The holes are filled iteratively using a block 

structuring element to propagate valid data into the invalid region and a single erosion of 

the mask using the same structuring element. The process continues until all invalid data 

indicated by the mask is eroded away. Thus, the masked averaged hole fill algorithm has 

a theoretical computational complexity of   2
MN  if only one valid pixel exists in the 

entire solution and a lower bound complexity of  MN . In practice, the masked 

averaged hole fill algorithm is close to the lower bound complexity unless the disparity 

map has substantial error indicated by the mask. 
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The invalid data is segmented by the threshold of the correlation value of the 

chosen match for each reference point in the reference image. The threshold is chosen to 

be 0.5 to avoid accepting matches that could have resulted from noise or uncorrelated 

inputs. The invalid data also includes points in the solution that are not matched at all 

because the reference window does not contain enough information. The result is a mask 

with the same dimensions as the solution, assigning a value of ‘1’ to an invalid solution 

and a ‘0’ to a valid solution. The mask is passed to the hole filling part of the error 

correction algorithm, and the output of the algorithm is the corrected solution with only 

valid data. A block diagram of the hole filling algorithm is shown in Figure 35. 
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Figure 35.   Block Diagram of Ad-Hoc Masked Averaged Hole Fill Algorithm. 

Filling the invalid regions with valid data resembles a zero-order hold. Valid 

solutions are iteratively repeated until the invalid region is filled. If two or more solutions 

are propagated to occupy the same invalid point, the solutions are averaged. The process 

is illustrated in Figure 36. 
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Figure 36.   Illustration of Masked Averaged Hole Fill Algorithm. 
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The masked averaged hole fill spatially corrected solution is passed to the next 

step in the disparity computation algorithm. 

3. Masked Linear Hole Fill 

The masked linear hole fill error correction algorithm is similar to the masked 

average hole fill algorithm, but the valid data propagation is extended to a first order 

approximation. The invalid data is segmented by applying the 0.5 minimum threshold 

and assigning a mask bit of ‘1’ to solutions that need to be replaced with the linear 

approximation. The overall block diagram of the masked linear hole fill algorithm is 

shown in Figure 37. 
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Figure 37.   Block Diagram of Ad-Hoc Masked Linear Hole Fill Algorithm. 

The linear approximation is computed in the horizontal and vertical directions 

independently and averaged point by point for each invalid solution indicated by the 

mask. First, the bounding valid solutions around the invalid space are identified. The 

algorithm computes the difference between the bounding solutions and divides by the 

number of invalid solutions plus one representing the linear change between each 

solution and its immediate neighbor. The invalid solutions are filled by accumulating the 

change to the previous solution starting from the left valid solution and end at the right 

valid solution. The same process is repeated for every invalid region in the vertical 

direction. The process is illustrated in one dimension in Figure 38. The implementation of 

the masked linear hole fill algorithm has a complexity of  MN k   where k  is the 

number of linear corrections needed. 
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Figure 38.   Illustration of Masked Linear Hole Fill Algorithm. 

The masked linear hole fill spatially corrected solution is passed to the next step 

in the disparity computation algorithm. 

D. RESULTS 

The traditional method solves the correspondence problem with a dense disparity 

map, providing a solution vector for every point in the reference image. Applying error 

correction, we discard portions of the dense disparity map and replace the holes with 

redundant data. Thus, the raw dense disparity map produced by the back matching 

strategy can be seen as a sparse matrix of valid solutions, and error correction recovers 

the missing data between valid solutions. The raw solutions alone do not satisfactorily 

meet the objective of accuracy set out in Chapter I. 
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1. Raw Back Matching Output 

First, the raw output from the back matching strategy is evaluated. For 

computational reasons, the search range and Gaussian pyramid are used in producing the 

raw output, and therefore, their impacts are not independently considered. The disparity 

maps are heavily corrupted with errors, particularly in regions with low information. The 

raw output using three levels and a search range of 5   at the coarsest resolution and 

 1   at each finer resolution is shown in Figure 39. 

Reference Image Disparity K  

Figure 39.   Raw Output of Multiple Images: Ball, Meter  
and Shrub. After [19], [23], [24] 
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The intensity at each point is the magnitude of the vector describing the change in 

x  and y  for the pattern in the reference image to the matched target pattern in the target 

image. The associated   at each point is shown for illustration. Higher intensity   

means that the chosen match at that point was a good one, and low intensity or black 

mean that the chosen match was weak or the algorithm did not find a match. 

The uncorrected error corrupts the disparity maps beyond usefulness. Thus, 

additional error correction is necessary at each level for the disparity maps to be 

meaningful for any subsequent image segmentation. 

2. Spatially Correlated Correction 

a. Masked Averaged Hole Fill With Median Filtering 

The masked averaged hole fill algorithm is applied to the resulting raw 

disparity map solution output from the back matching strategy algorithm at each level. 

The results are shown in Figure 40 using three levels and a search range of  5   at the 

coarsest resolution and  1   at each finer resolution. 
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Reference Image Disparity Mask  

Figure 40.   Masked Average Hole Fill Corrected Disparity Maps of  
Multiple Images: Ball, Meter and Shrub. After [19], [23], [24] 

Like before, the intensity at each point is the magnitude of the disparity 

vector with respect to each point in the reference image pointing to the match in the target 

image. The associated mask is the result of thresholding the correlation coefficients   

below 0.5, and white pixels indicate where spatial correlation correction was applied. The 

white pixels in the mask are the discarded disparity solutions that were replaced by the 

zero-order hold nearest neighbor approach of the masked averaged hole fill algorithm. 
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One can notice by the mask that significant error exists using the traditional matching 

techniques, and about half of each disparity map consists of spatially correlated values. 

The error corrected disparity maps are cleaner and more consistent. The 

results illustrate that the traditional method can produce disparity maps with enough 

quality for object segmentation. However, the accuracy of the disparity maps is quite 

low. For example, the sign is certainly distinct from the background, but the edges 

determined by the masked averaged hole fill algorithm are quite different from the true 

edges of the sign in the reference image. This effect can also be seen in the significant 

uncertainty around the edges of the ball (as depicted in the ball mask) or the near field of 

the meter mask. Therefore, sharp edges in the disparity map help to segment objects but 

do not indicate accuracy in the disparity map. 

b. Masked Linear Hole Fill With Median Filtering 

The masked linear hole fill algorithm is also applied to the resulting raw 

disparity map solution output from the back matching strategy at each level like the 

masked average hole fill. The difference is the linear interpolation of the sparse disparity 

solution matrix after masking to a dense disparity solution matrix. The results are shown 

in Figure 41 using three levels and a search range of 5   at the coarsest resolution and 

 1   at each finer resolution. 
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Reference Image Disparity Mask  

Figure 41.   Masked Linear Hole Fill Corrected Disparity Maps of  
Multiple Images: Ball, Meter and Shrub. After [19], [23], [24] 

Like the masked average hole fill results, the intensity of the disparity map 

indicates the magnitude of the disparity vector with respect to the reference image, and 

the mask indicates where spatial correction was applied (white pixels). The disparity map 

solutions are linearly interpolated by the masked linear hole fill algorithm, and the effects 

can be seen by the slight banding of intensity values around the solutions. 



 57

The error corrected disparity maps with the linear interpolation produce 

cleaner and more consistent disparity maps when the invalid solutions occupy regions of 

varying depth while having similar impact to the masked averaged hole file in regions of 

constant disparity. Thus, the masked linear hole fill algorithm generally does a better job 

of error correction than the masked averaged hole fill. However, the accuracy is still 

quite low. The edges in the disparity map are blurred and seem to more accurately depict 

the depth process in the ball image, but the masked linear hole fill algorithm fails to 

accurately determine the depth process in both the shrub and meter disparity maps much 

like the masked averaged hole fill algorithm. 

3. Computational Complexity and Memory Requirements 

The traditional back-matching strategy is not particularly computationally efficient. 

For the raw results alone, the computational complexity is high even with the Gaussian 

pyramid sub-sampling with a growth function  MNDU  where M  and N  are the rows 

and columns of the reference image, D  is the search range and U  is the set of matches to 

be back-matched. Employing the masked averaged hole fill algorithm could add 

  2
MN  between each level in the pyramid. The masked linear hole fill algorithm adds 

 MN k   complexity where k  is the number of corrections to be made between each 

level in the pyramid. Thus, employing the masked linear hole fill algorithm for error 

correction would have a total computational complexity of   MNDU MN k L     

where L  is the number of levels. Also, the nature of the traditional back-matching strategy 

makes the true computational complexity difficult to predict. 

The memory requirement for the traditional algorithm is approximately three times 

the memory occupied by the original stereo pair. This accounts for both full-sized Gaussian 

pyramids along with full-sized intermediate solutions. Full-sized intermediate solutions are 

needed for the ad-hoc error correction to function properly. Also, the precise memory 

requirements during run-time are unpredictable because the ad-hoc error correction 

depends on the number of invalid solutions indicated by the error correction mask.  
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The computational cost and memory requirements running the traditional 

matching technique with a nine by nine window, three levels and  5   disparity at the 

coarsest levels and  1   disparity at each finer resolution are shown in Table 2. All 

experiments were performed on a computer equipped with an Intel Core 2 Extreme 

X9000 processor and 4 GB of available RAM. The peak memory requirements are also 

shown (including the buffering of the stereo pair of images). These measurements were 

taken using Microsoft Windows Task Manager and are shown only for illustrative 

purposes. 

Table 2.   Traditional Matching Timing and Memory Requirements. 

Stereo Pair Processing Time Peak Memory Usage 
Ball (256 x 256) 30 s 2976 kBytes 
Meter (512 x 480) 111 s 9684 kBytes 
Shrub (512 x 480) 127 s 10584 kBytes 

 

The processing time is approximately linear with respect to the size of the input 

images, but the memory requirements can vary significantly depending on the amount of 

error correction needed.  Also, a significant portion of the processing time (about 95%) 

was dedicated to calculating the correlation coefficient   even with a fully optimized C 

implementation. 

The traditional method was investigated and demonstrates the ability of the 

ordinal to solve the correspondence problem by the greedy method. In the next chapter, a 

more efficient dynamic programming algorithm with better memory requirements is 

investigated. Dynamic programming offers improved matching, complexity and memory 

requirements. 
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V. ORDINAL MATCHING WITH DYNAMIC PROGRAMMING 

In recent years, dynamic programming techniques have been applied to the 

correspondence problem, often producing better results than the traditional greedy 

method of matching [12], [13], [25]. Dynamic programming computes solutions to the 

correspondence problem to optimality given constraints on smoothing and spatial features 

of the depth process. Thus, unlike the traditional method, dynamic programming can 

account for the disparity of a set of points simultaneously before committing to a 

solution. This advantage of dynamic programming reduces the need for error correction 

to produce good quality disparity maps.  

Dynamic programming is often applied to solve stereo correspondence problems 

reduced to one dimension. Those algorithms begin by rectifying the scan lines of each 

stereo image so that the scan lines coincide with the epipolar plane formed by the stereo 

pair of cameras. Rectification requires information about the stereo pair of cameras, 

which means that such approaches are not a general solution to the correspondence 

problem but a specific one. Therefore, a unique method of two-dimensional dynamic 

programming particular to window based methods is investigated that retains general 

solution qualities. 

A. DYNAMIC PROGRAMMING MATCHING STRATEGY WITH THE 
ORDINAL 

Changming Sun [12] illustrated a dynamic programming approach to window 

based correlation methods similar to the ordinal. His algorithm was shown to be very 

efficient, solving the correspondence problem in milliseconds on a typical personal 

computer and producing results comparable to the graph cuts method (very accurate but 

one of the most computationally expensive and dynamic approaches). Sun’s dynamic 

programming method can be adapted to use the ordinal instead of the zero-mean 

normalized cross co-variance chosen for his research. 

The dynamic programming method centers on the construction of a solution 

volume where the disparity map is the surface with the maximum correlation within the 
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volume. While the solution volume can be extended to hyper dimensionality to account 

for two dimensional disparity vectors, the solution volume is instead constructed for only 

disparity along the scan lines (horizontal translation). The consequence of this 

simplification is that as the epipolar plane deviates from the scan lines, the accuracy of 

the matching algorithm falls off dramatically. This can occur if one camera in the stereo 

pair is out of alignment with respect to the other camera rotationally, vertically translated 

or both. For this research, the stereo pair is assumed to be in sufficient alignment that the 

epipolar plane is consistent enough for successful window based matching along scan 

lines. 

1. Multirate and Sub-Regioning With a Pyramid 

Like the traditional back-matching method, Sun’s algorithm uses multirate to 

reduce computational complexity and improve matching accuracy. The down-sampling 

procedure is simplified from the Gaussian pyramid down-sampling using the follow 

steps: 

1. Given a sub-region of iM  x iN  pixels and r  down-sampling rate, the sub-

region is divided into non-overlapping r  x r  blocks. 

2. The down-sampled sub-region is the simple average of each r  x r  block. 

The dynamic programming method proposed by Sun also introduces sub-

region partitioning to improve computational complexity. Each sub-region is chosen 

to minimize the complexity  i i iM N D where iM  is the rows of sub-region ,i  iN  is 

the columns of sub-region i  and iD  is the expected maximum range of disparities 

within the sub- region i . The partitioning results from a divide-and-conquer scheme 

where an initial sub-region partitioning is refined by merging regions with similar 

complexity and dividing larger regions into smaller regions with less cumulative 

complexity. Therefore, the goal is to divide the level in the pyramid into small regions 

of high deviation disparities and larger regions with low deviation of disparities. The 

sub-region partitioning is known to be less complex than  MND  where M  and N  
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are the rows and columns respectively of the un-partitioned level in the pyramid and 

D  is the maximum disparity range of the level. 

Partitioning the working pair at a level in the pyramid into sub-regions constitutes 

the first step to constructing a volume of solutions. For a particular sub-region i  taken 

from the reference and target images, the solution volume is calculated by shifting the 

target sub-region through the range of disparities maxd  to max ,d  where 

max max[ , , ] ,d d D   with respect to the reference sub-region. For each point in the 

reference sub-region, the associated correlation values at each disparity d  are recorded in 

the depth of the volume. The process is illustrated in Figure 42. 
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Figure 42.   Illustration of Constructing the Solution Volume  , ,C i j d . 
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At each level l  where the base of the pyramid is level zero, the optimal surface of 

the disparity is calculated and propagated to the next level 1l  in the pyramid to 

constrain the following search to within the neighborhood of the previous target match. 

The disparity map of the previous level 1l   is up-sampled and multiplied by the rate 

used to construct the pyramid. After up-sampling, the disparity map is linearly 

interpolated to reduce discontinuities. The coarse to fine algorithm is illustrated in the 

following steps: 

1. Beginning with the top level, partition the current level l  into sub-regions 
of minimum complexity. 

2. For each sub-region, compute and solve the solution volume with dynamic 
programming using the up-sampled disparity map of level 1l  as the 
initial search. If the current level is the top, the initial disparity map is 
assumed to be all zero. 

3. Up-sample the level l  solution by linear interpolation and multiply by the 
sampling rate. 

4. Return to step 1 if level 0l  . 

2. Solving the Solution Volume With Two-Stage Dynamic Programming 

After the solution volume is constructed, the maximum surface through the 

volume is computed using a two-stage dynamic program (TSDP). The maximum surface 

is the optimal path based on the maximum summation of correlation coefficients and the 

constraint p  on the maximum slope of the surface in either the vertical or horizontal 

direction. If the dynamic program is not given a constraint, it selects the maximum 

correlation values at each point in much the same way matches are chosen in the greedy 

method explained in the previous chapter. The maximum surface is illustrated in Figure 

43 and represents the disparity of the sub-region. 
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Figure 43.   Maximum Surface through the Solution Volume. After [12] 

The first stage in solving for the maximum surface is to compute the summation 

of correlation values as a cost function from the solution volume. The summation volume 

is  , ,Y i j d  where i  and j  are the rows and columns of the volume and d  is the index 

through the range of disparities for each row and column. The summation volume is 

calculated using the recursive formula 

      
:

, , , , max , 1, .
t t p

Y i j d C i j d Y i j d t


     (16) 

The first stage of the dynamic program proceeds by selecting a column by 

disparity slice of the solution volume. Then, the dynamic program computes the optimal 

summation of cost functions from the top row to the bottom row in the slice for each 

disparity. This process is illustrated in Figure 44. 
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Figure 44.   Computing the Solution Volume by Slice. After [12] 

The second stage of the dynamic program begins by finding the optimal path 

through the row by disparity slice. The optimal path is the minimum distance recursion 

through the bottom slice of the summation volume  , , .Y i j d
 
The minimum distance 

 , ,G i j d  recursion is defined by the recursive equation 

       
:

, , , , max 1, , .
t t p

G i j d Y i j d G i j d t


     (17) 

 Once the optimal path through the bottom slice is determined, the second stage 

proceeds to the next slice (row) up of the summation volume. Subsequent slices’ optimal 

paths above the bottom slice are constrained to be within p  disparity of the previous 

optimal path. The second stage dynamic program is illustrated in Figure 45. Thus, the 

minimum distance recursive algorithm for calculating the optimal path through the thi  

slice of the summation volume is: 

1. Compute the distances using Equation 17 starting from 1i   and 
computing the maximum summation given the slope constraint p . 

2. Record the back-pointer to each maximum tht  (as in Equation 17) cost 
summation. 

3. After the minimum distance recursion, choose the final maximum cost. 

4. Recurs backward using the back-pointers to form the optimal path. 
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Figure 45.   Computing the Optimal Path through the Summation Volume.  
After [12] 

Finally, the optimal paths are concatenated into a surface of disparities. The 

resulting surface is the optimal solution of the solution volume. This solution is up-

sampled, interpolated and multiplied by two if the solved level is not the base of the 

pyramid to constrain the search range of the next finest resolution. 

B. OPTIMIZATIONS 

The dynamic programming approach to solving the correspondence problem 

allows for more freedom in orienting the problem to be spatially (memory) and 

computationally efficient. While Sun’s implementation of the TSDP is efficient for 

software, further optimizations are necessary to make the algorithm more feasible in 

hardware. Hardware efficiency is maximized when the algorithm uses a constant space 

and computational complexity. This is because hardware must always account for the 

algorithm’s worst-case scenario in computational complexity. Anything less than worst-

case complexity leaves some hardware logic idle, resulting in an inefficient 

implementation. Thus, the sub-region partitioning and construction of the solution 

volume are modified to optimize hardware computational complexity. 
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1. Constant Sub-Region Partitioning 

The sub-region partitioning is essential for breaking down the stereo pair into 

manageable bits and preventing the solution volume from becoming overly ponderous. 

However, variable sub-region partitioning requires varying memory requirements, which 

can cause problems for an efficient hardware implementation. Thus, sub-region 

partitioning is refined such that sub-regions have constant dimensions.  

Optimization of sub-region partitioning for hardware has a couple key differences 

from Sun’s method. First, sub-region partitioning can be adapted to operate on different 

parts of the stereo pair independently. This can dramatically reduce the working memory 

requirements of a hardware implementation since the algorithm must only buffer the 

regions within the reference and target image of interest. Therefore, the original stereo 

pair is partitioned into constant dimension sub-regions, and the pyramid decomposition is 

performed on the partitions and not the original stereo pair. Second, the sub-regions are 

kept to a constant square dimension a  (with overlapping edges in the target sub-region to 

account for search range edge effects) so that computational complexity is kept constant. 

The algorithm for constant sub-region partitioning is defined using the following steps: 

1. For the reference image, divide the image into a x a  non-overlapping sub-
regions. For the target image, divide the image into the same a x a  sub-
regions but with additional padding D  to account for search range. 

2. For each sub-region, decompose the sub-region into a pyramid. 

3. Solve the solution volume proceeding from coarse to fine. 

4. Insert the disparity map of the finest resolution into the final solution. 

5. Repeat step two until all sub-regions are solved. 

The sub-region partitioning is illustrated in Figure 46. In this example, the target 

sub-region includes padding to the left and right. In practice, it is only necessary for the 

overlapping padding in the target to be on the right side if the reference image is the right 

stereo image and on the left side if the reference image is the left stereo image for 

simplicity.  
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Figure 46.   Example of Constant Sub-Region Partitioning and Pyramid. 

2. Abstract Solution Volume 

Since the sub-regions are now partitioned constantly, generating a solution 

volume for all possible disparities at each level in the pyramid becomes impractical. The 

cubic shape of the solution volume grows to maximum complexity at the base level for 

nearly every sub-region. Therefore, the solution volume is redefined such that the volume 

complexity is always the minimum possible  l lM N D  where lM  is the rows of the 

constant sub-region at level l  and lN  is the columns of the constant sub-region at level l  

and D  is the uniform search range at each level. 

The minimum solution volume is achieved by forming an abstract volume of 

solutions around the solution surface of the previous level. After the previous solution at 

the 1l   level is up-sampled and interpolated, a search range is constructed around each 

point in the up-sampled solution surface to form a new solution volume around the 1l   

surface. This simplification in complexity is intuitive since the solution at level l  must 

always be within the neighborhood of the 1l   level solution. The new solution volume 

construction algorithm is defined in the following steps: 

1. For each pixel in the reference sub-region, construct a reference window. 

2. Translate to the within the target neighborhood of the previous solution 
and compute the correlation values for D  disparities. 

3. Record the correlation values and associated cumulative disparity d  in the 
abstract solution volume. 
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The abstract volume can be efficiently implemented using C++ techniques. The 

important innovation that makes the abstract volume possible is the recording of the 

disparity along with the correlation value and always D  disparities for each reference 

pixel. This results in a constant  l lM N D  complexity with proportional memory 

requirement. To illustrate this, the abstract volume is compared to the cubic volume in 

Figure 47. 
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Figure 47.   Visualization of the Abstract Volume Compared to the  
Cubic Volume. After [12] 

The abstract solution volume is stable so long as the maximum slope p   of the 

solution surface does not exceed the search range .D  If the slope is greater than the 

search range, the abstract solution has discontinuous regions that cannot be solved using 

the second stage minimum distance of the dynamic program. The discontinuity appears to 

the TSDP algorithm as all paths through the discontinuity having infinity cost. 

C. RESULTS 

1. Raw Dynamic Programming Matching Output 

The dynamic programming algorithm yields disparity maps of good quality 

without any error correction. For these experiments, the number of levels is set to three, 

window dimension is 11 by 11, sub-region dimension is four by four and the search range 
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is four. Due to an implementation issue with the dynamic program search function, the 

sub-region dimension cannot get too large or very little of the image will be available for 

processing due to edge effects. Thus, the sub-region dimension is kept small, leading to 

potential for moderate inter-sub-region error. Also, the large black regions on the right 

and bottom of the images are due to the edge of effects of a weak sub-region 

implementation. The disparity maps produced by the algorithm are shown in Figure 48. 

While it is not obvious, the disparity maps produced by the dynamic program are more 

accurate than any of the disparity maps produced by the traditional back-matching 

method. This is evident in the clearly defined edges of objects such as the meter and the 

sign in the meter and shrub stereo pairs where all implementations of the traditional 

method failed. 
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Reference Image Disparity  

Figure 48.   Disparity Maps from Dynamic Programming for  
Ball, Meter and Shrub. After [19], [23], [24] 



 71

Error correction techniques are still possible on the final or intermediate disparity 

maps. Although not shown, the correlation coefficient of each chosen match is known, 

and either the masked averaged hole fill or masked linear hole fill algorithms can be 

applied to spatially correlate disparity values that are below a minimum   threshold. 

2. Computational Complexity and Memory Requirements 

The dynamic programming with applied abstract volume and constant sub-region 

partitioning optimizations produced results that satisfactorily met the objectives of this 

research. The computational complexity is a constant  i iM N D  where iM  is the rows 

and iN  is the columns of the chosen sub-region partitioning. It is noteworthy that this 

computational complexity approaches the theoretical minimum possible for the stereo 

correspondence problem. The memory requirements are proportional to the 

computational complexity since only one solution is stored for  i iM N D . Using the 

ordinal and minimum complexity abstract solution volumes, we get the disparity map 

computation times for various images and parameters tabulated in Table 3. All 

experiments were performed on a computer equipped with an Intel Core 2 Extreme 

X9000 processor and 4GB of available RAM. The peak memory requirements are also 

shown (including the buffering of the stereo pair of images). These measurements were 

taken using Microsoft Windows task manager and, thus, are inherently inaccurate and 

shown only for illustrative purposes. 

Table 3.   Dynamic Programming Timing and Memory Requirements. 

Stereo Pair Processing Time Peak Memory Usage 
Ball (256 x 256) 26 s 1924 kBytes 
Meter (512 x 480) 124 s 4288 kBytes 
Shrub (512 x 480) 124 s 4288 kBytes 

 

The processing time and peak memory usage are linear with respect to the size of 

the input image pair. The peak memory usage was constant since the memory usage is 

entirely dependent on the size of the sub-region partitioning in this implementation.  
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Also, a significant portion of the processing time (about 95%) was dedicated to 

calculating the correlation coefficient   even with a fully optimized C implementation. 

The dynamic programming method was shown to be effective with the ordinal as 

the correlation metric. In particular, it produced more accurate disparity maps compared 

to the traditional greedy method without the need for ad-hoc error correction. However, 

ad-hoc error correction can still be applied to clean up the minor errors in the dynamic 

programming matching process. 
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VI. CONCLUSIONS 

It was shown that the ordinal is a logical measure of pattern correlation that can 

be synthesized into hardware. Since with all stereo correspondence algorithms, the 

pattern matching measure is at the core of all processing, obtaining a fast metric 

implementation is crucial to achieving real-time stereo processing.  

A. SUMMARY OF THE WORK 

First, the ordinal was investigated for performance with the traditional back-

matching strategy with ad-hoc error correction. The traditional back-matching strategy 

demonstrated that the ordinal is a capable metric for stereo correspondence. However, the 

traditional back-matching strategy was computationally complex with at least 

 MNDU  growth to support the search range D  and reverse matching depth .U  Also, 

the traditional matching strategy had varying memory requirements and required at least 

three times the memory buffering of the original stereo pair to support the Gaussian 

pyramid and full-size intermediate disparity solutions.  

The ordinal was then investigated for performance with a more recent window-

based two-dimensional, two-stage dynamic programming method. The dynamic 

programming produced raw results of much higher accuracy compared to the traditional 

strategy un-aided by ad-hoc error correction. Also, the dynamic programming robustness 

offered the opportunity for computational complexity optimizations. Using these 

optimizations, we found that the dynamic programming method had a constant 

computational complexity of  i iM N D  based on the iM  rows and iN  columns of the 

chosen sub-region partitioning and search range .D  This computational complexity is 

clearly less than the complexity of the traditional methods. Additionally, the memory 

requirements were consistently proportional to the computational complexity since the 

dynamic programming algorithm uses no dynamic memory allocation like the traditional 

methods. Thus, the dynamic programming algorithm distinctly outperformed the 

traditional methods in accuracy, complexity and memory requirements. 
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Second, the ordinal was investigated for its candidacy toward hardware 

implementation. The proposed architecture can feasibly be synthesized in an FPGA and 

theoretically computes the first correlation coefficient   in 25 log n     clock cycles at 

100 MHz in an Altera Cyclone family FPGA, fully pipelined. While an actual 

implementation was not possible for this research due to time constraints, an 

implementation of only the ordinal as a macro function with the search and solver (i.e., 

the investigated dynamic programming algorithm) left to software could be sufficient to 

achieve real-time dense disparity map computation. This is because, for all experiments, 

computation of the correlation coefficient   accounted for the majority of the processing 

time. 

B. FUTURE WORK 

This thesis presented a powerful method of solving the stereo correspondence 

problem using a logical metric and low complexity dynamic programming search and 

solution algorithms. The continuation of this thread of research is to proceed to an 

efficient hardware implementation and real-time demonstration of stereo correspondence 

on a pair of video inputs. Also, research can be done to implement a real-time stereo 

processor to help navigate real world situations for robotics. 
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